Comprehensive Int. Sc. Review Name:					
Free Body Diagrams - forces involved (applied, friction, gravity and normal) Net force Balanced forces					
The sum of all the forces a. acceleration	acting on an object is b. friction	the c. inertia d. net fo	orce e. weight.		
If you push down on your you?	r desk with a force of	10 N, what is the normal fo	rce pushing back on		
a. 0 N	b. 5 N	c. 10 N	d. 20 N		
For each of the followi	ng problems, give the net	force on the block, and the acc	eleration, including units.		
1) 12 N 7 kg	26 N	2) 40 kg	60 N		
Net Force =	$a = F/m = \underline{\hspace{1cm}}$	Net Force =	a = F/m =		
you? a. 0 N What is the net force actir a. zero b. 4,00	00 N up c. 14,	c. 10 N 000 N right d. 2,000 N 000 N 8,000 N	d. 20 N left e. 2,000 N right		
Velocity(speed) = di	stance/time				
A buggy goes across the average velocity?	room a distance of 2.	0 meters in 4.5 seconds. W	hat's the buggy's		
a. 9.0 m/s	b44 m/s	c. 2.3 m/s	d. 6.5m/s		
		s at the same constant velo cake the buggy to travel this c77 s			
sec. How far did she	run?	older running at 9.43 m/s.			
a. 50m	b. 100m	c. 200m	d. 400m		

Position Time Graphs – moving away, moving toward, standing still Straight line – constant velocity; curved line – changing speed Slope is velocity

Positive is moving away from origin and negative is moving toward origin

Which of the following **distance-time graphs (position–time graph)** best matches a person walking away from the motion detector at a constant speed?

Velocity Time Graphs – constant velocity with positive and negative direction Slope is acceleration

What does the slope of a position-time graph represent?

a. distance

b. speed

c. velocity

d. acceleration

Which of the following **velocity-time graphs** best matches a person walking away from the motion detector at a constant speed?

The following velocity-time graph represents a car driving around in a parking lot for 20 seconds. Use the graph to answer questions below.

At what time was the car at rest?

- a. 11 seconds
- b. 13 seconds
- c. 1 second
- d. 0-5 sec

During what time period was the car moving to the right at a constant velocity?

- a. 0-5 seconds
- b. 5-11 seconds
- c. 14-20 seconds

During what time period was the car moving to the left at a constant velocity?

- a. 0-5 seconds
- b. 5-11 seconds
- c. 14-20 seconds

What does the slope of this graph represent?

- a. velocity
- b. density
- c. acceleration
- d. speed

Calculating Slope $y_2 - y_1 / x_2 - x_1$

The best fit line shown on the graph below represents the relationship between mass vs. volume for water and an unknown substance. Then you need to answer the questions 14-19 with reference to the graph.

Mass Vs.Volume

What kind of relationship does the graph display?

- a. direct
- b. indirect
- c. no relationship
- d. incorrect

Which is the dependent variable a. volume	e? b. mas	SS			
The slope of the graph represer a. volume	nts b. mas		c. densit	у	d. velocity
Which substance has the small a. water	est dens b. unk	-			
All of the following statements a a. The density for wate b. The density for the u c. The density for the u	er is 1g/n unknown	nl. is 1.5 g/ml.	graph exce	pt	
If the unknown substance had a. 1 g/ml	a mass b. 1.5	-	ume would c. 1.5 ml		d. 3 ml.
Final velocity = accelerati	ion x ti	me + initial v	elocity		
Acceleration Formula Acceleration rates	falling	toward eart	h – feathe	er & hamme	r on moon
The rate at which velocity chang a. acceleration		efined as on c. iner		 I. net force	e. weight.
Newton's Laws of Motion Law of Inertia					
The inertia of an object and its r a. the variables are dire		ted	b. the va	riables are indi	rectly related
Which object has the greatest i a. bowling ball		-Pong ball	c. toothpi	ck	d. pencil
A person in a head-on collision, who is not wearing a seat belt, continues to move forward at the same speed of the car because of					
a. friction	b. weig		c. gravity		d. inertia
Equal and Opposite Forces					
Force of gravity is depend	dent or	mass so inc	r. mass, i	ncr. gravity	
Assume that a student has a mass of 50 kg. The student's mass would be the greatest: a. on earth b. on the moon c. in deep space d. it will be the same in all of these places					

 $KE = 1/2mv^2$

Use the following Diagram for #48-50

The ball will have the greatest potential energy at:

- a. point A
- b. point B
- c. point C
- d. point D
- e. point E

The ball will be moving fastest at:

- a. point A
- b. point B
- c. point C
- d. point D
- e. point E

Matter

Be able to identify elements, compounds and mixtures by looking at diagrams.

Atomic Structure

are located in the nucleus and have a	charge.
are located in the nucleus and have a	charge.
are located outside the nucleus and have a	charge.

Mass number = protons + neutrons

Atomic number = number of protons (same element)

Isotopes are elements with the same atomic # and different number of neutrons.

Neutral atoms have the same number of protons and electrons.

Complete ALL of the missing information for the following ISOTOPES in the table below.

Element	Element	Mass	Atomic	Number	Number	Number
Name	Symbol	Number	Number	Of Protons	Of Neutrons	Of Electrons
Carbon - 12						
Chlorine - 36						

Bohr models showing number of protons & neutrons inside with electrons in energy levels.

Using the above Bohr Model:

= # of protons	= # of e	lectrons _	= # of neutrons
= atomic #	= mass #		Element Name and Symbol
Periodic Table			
Metals	_ electrons and are or	n the	_ side of the periodic table
Nonmetals	electrons a	and are on the $ _$	side of
the periodic table.			
Periodic trends – ele	ments in the	gro	oup have similar chemical
properties and beha	vior.		

Group number tells the # of valence electrons and is the same for the entire group

Group #1 = 1 valence e-Group #13 = 3 valence e-Group #15 = 5 valence e-Group #16 = 6 valence e-Group #17 = 7 valence e-Group #18 = 8 valence e-

Each element forms an ion and reacts with other ions in order to have a full octet. List properties of metals and nonmetals:

Bonding

Elements cannot be further broken down.

Compounds can only be chemically separated, not physically.

Chemical Reactions

Signs of a chemical change: bubbling, unexpected color change, change in odor, temperature change, gas production, formation of a precipitate

Reactants are on the left hand side of a chemical reaction and products are on the right hand side.

Law of Conservation of Matter: mass of reactants = the mass of the product